Parallel Implicit Adaptive Mesh Refinement Scheme for Body-Fitted Multi-Block Mesh
نویسندگان
چکیده
A parallel implicit adaptive mesh refinement (AMR) algorithm is described for the system of partial-differential equations governing steady two-dimensional compressible gaseous flows. The AMR algorithm uses an upwind finite-volume spatial discretization procedure in conjunction with limited linear solution reconstruction and Riemann-solver based flux functions to solve the governing equations on multi-block mesh composed of structured curvilinear blocks with quadrilateral computational cells. A flexible block-based hierarchical data structure is used to facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. A matrix-free inexact Newton method is used to solve the system of nonlinear equations arising from this finite-volume spatial discretization procedure and a preconditioned generalized minimal residual (GMRES) method is used to solve the resulting non-symmetric system of linear equations at each step of the Newton algorithm. Right preconditioning of the linear system is used to improve performance of the Krylov subspace method. An additive Schwarz global preconditioner with variable overlap is used in conjunction with block-fill incomplete lower-upper (BFILU) type preconditioners based on the Jacobian of the first-order upwind scheme for each sub-domain. The Schwarz preconditioning and block-based data structure readily allow efficient and scalable parallel implementations of the implicit AMR approach on distributed-memory multi-processor architectures. Numerical results are described for several flow cases, demonstrating both the effectiveness of the mesh adaptation and algorithm parallel performance. The proposed parallel implicit AMR method allows for anisotropic mesh refinement and appears to be well suited for predicting complex flows with disparate spatial and temporal scales in a reliable and efficient fashion.
منابع مشابه
Parallel Solution-Adaptive Method for Two-Dimensional Non-Premixed Combusting Flows
A parallel adaptive mesh refinement (AMR) algorithm is proposed and applied to the predictions of both laminar and turbulent steady non-premixed compressible combusting flows. The parallel solution-adaptive algorithm solves the system of partial-differential equations governing two-dimensional axisymmetric laminar and turbulent compressible flows for reactive thermally perfect gaseous mixtures ...
متن کاملParallel Adaptive Mesh Refinement Scheme for Turbulent Non-Premixed Combusting Flow Prediction
A parallel adaptive mesh refinement (AMR) algorithm is proposed for predicting turbulent non-premixed combusting flows characteristic of gas turbine engine combustors. The Favre-averaged Navier-Stokes equations governing mixture and species transport for a reactive mixture of thermally perfect gases in two dimensions, the two transport equations of the k-ω turbulence model, and the time-average...
متن کاملA parallel solution - adaptive method for three-dimensional turbulent non-premixed combusting flows
A parallel adaptive mesh refinement (AMR) algorithm is proposed and applied to the prediction of steady turbulent non-premixed compressible combusting flows in three space dimensions. The parallel solution-adaptive algorithm solves the system of partial-differential equations governing turbulent compressible flows of reactive thermally perfect gaseous mixtures using a fully coupled finite-volum...
متن کاملParallel Adaptive Mesh Refinement Scheme for Three-Dimensional Turbulent Non-Premixed Combustion
A parallel adaptive mesh refinement (AMR) algorithm is described for predicting turbulent non-premixed gaseous combusting flows in three space dimensions. The Favreaveraged Navier-Stokes equations governing a reactive mixture of thermally perfect gases, the two transport equations of the k-ω turbulence model, and the time-averaged species transport equations, are all solved using a fully couple...
متن کاملAdaptive mesh refinement computation of acoustic radiation from an engine intake
A block-structured adaptive mesh refinement (AMR) method is applied to the problem of computing acoustic radiation from an aeroengine intake. The aim is to improve the efficiency of the computation through reduction of computational cells. A parallel implementation of the adaptive mesh refinement algorithm is achieved using message passing interface. It combines a range of 2and 4-order spatial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005